Satellite Imaging Corp.

Archive for the ‘Geospatial Technology’ Category

DigitalGlobe Request US government to Lift Restrictions on Commercial Satellite Imagery

Sunday, October 27th, 2013

Satellite imagery provider DigitalGlobe has made a request for the US government to lift restrictions on the pixel resolution of available commercial satellite imagery to better compete against non-US-based companies.

DigitalGlobe argues that the quality of commercial aerial photography — like images available on Google and Bing map websites — is in more than 90 countries at 5-centimeters resolution. These images are taken from an aircraft, not a satellite.

The petition was made to the Commerce Department and National Oceanic and Atmospheric Administration (NOAA) to lift restrictions that limit the quality of commercially available satellite images to 0.5 meter resolution.

Without the waiver, US government agencies and strategic partners will be the only customers allowed access to the highest resolution images.

The request was made on May 14, 2013 but has yet to receive a ruling. Astrium has also requested a lift to the French government. Astrium’s Pleiades 1A/1B satellite, offers satellite imagery at 0.5 meter resolution.

Other satellite sensors at 0.5m resolution includes DigitalGlobe’s WorldView-2, WorldView-1, GeoEye-1 and the new and upcoming launch during 2014 of WorldView-3 will provide a resolution of 0.31 meters.

By allowing higher resolution satellite imagery to commercial customers will help the US maintain a technological edge over foreign companies.

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery and image processing services for analysis and to support Geographic Information System (GIS) and other mapping and research applications.

The company specializes in satellite imaging collections, producing seamless orthorectified imaging mosaics, DEM’s and 3D terrain models for many industries using CAD and GIS applications utilizing high, medium resolution mono and stereo satellite image data.

For more information, please contact us.

Website: www.satimagingcorp.com

Pleiades-1B Satellite Successfully Launched

Sunday, December 2nd, 2012

Pleiades-1B satellite was successfully launched on December 2, 2012 built by Astrium was launched off aboard a Soyuz launcher from the European Space Centre in French Guiana.

Pleiades-1B is the second dual-use, very-high-resolution satellite for the Pleiades constellation.

The launch of Pleiades-1B marks the third step in the formation of a constellation of four satellites combining a double daily revisit capability and an ingenious range of resolutions.

Pleiades-1B Satellite Sensor

Image Credit: ASTRIUM

Pleiades-1B Satellite Launch

Pleiades-1 (also known as Pleiades-1A) and 1B satellites will be phased 180° apart in the same near-polar sun-synchronous orbit at an altitude of 694 km, enabling daily revisits to any location on the planet which makes it ideal for mapping large scale areas including engineering construction projects, monitoring of mining, industrial and military complexes, conflict zones and crisis/disaster areas, natural disasters, evacuation and rescue operations.

Pleiades-1 and Pleiades-1B will deliver 0.5m imagery products, and SPOT-6 and SPOT 7, designed to assure continuity of service after SPOT-5 (2.5/5m) to supply high-resolution data products at 1.5m resolution. SPOT-6 was launched on September 9, 2012.

In addition to their high precision, the Pleiades satellites are also notable for their remarkable agility, which enables tilted imaging from nadir and operation in several acquisition modes (20 images over 1000 x 1000 km², stereo, 3D, mosaic, corridor, etc.). For more technical information on the Pleaides-1B satellite, please visit here.

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery and other remote sensing products for analysis and mapping applications such as Geographic Information System (GIS).

The company specializes satellite imaging technology producing seamless orthorectified imaging mosaics, DEM’s and 3D terrain models for many industries using CAD and GIS applications using high, medium resolution mono and stereo satellite image data.

For more information, please contact us.

Website: www.satimagingcorp.com

Virunga National Parks Mountain Gorillas Threatened as Fighting Continues

Monday, May 14th, 2012

Virunga National Parks and its endangered mountain gorillas are threatened once again in Democratic Republic of Congo (DRC) as rebels clash with the Congolese army in the park’s gorilla sector. The gorillas have been caught in a deadly crossfire for years and the bloody conflict is complicated by the pressures of a surging refugee population and an illegal charcoal trade decimating the park that are threatening the gorillas’ lives.

Virunga National Park is home to about 200 of the world’s remaining 783 mountain gorillas and are not frequently hunted for their meat, but can be maimed or killed by poachers leaving traps or snares for other animals. They have also been killed for their body parts to be sold to collectors.

Photo Credit: Professor Richard S. Muller

Satellite Imaging Technology Supports Monitoring of the Endangered Mountain Gorillas

Satellite images provide extremely useful information to Conservationists, Scientists and Researchers in viewing out-of-the-way remote places. Conservationists, for example, must monitor far-flung areas in need of protection. Wars, poverty, remoteness, lack of government involvement, and uncertainty over the best places and ways to focus limited resources can all hinder conservation efforts. Satellite imagery is giving scientists and conservationists some of the tools they need to get valuable information on land cover and land use changes in wild areas that are in need of protection.

3D Fly-through Simulation of Visoke Volcano in

Virunga National Parks (DRC and Rwanda)

1m Stereo IKONOS Satellite Image Data and 5m DTM

Copyright © GeoEye and Satellite Imaging Corporation)

To watch video click on image.

Read our stories on Virunga National Parks:

Satellite Images and GIS Supports Conservation Efforts in Virunga National Parks, Africa

Virunga National Parks Gorilla Murders – Caught in the Line of Fire – Satellite Imaging Update

Satellite Image of Mount Nyamulagira Volcano in Virunga National Parks

For further information and news visit Wildlife Direct to read the latest up to minute news about the mountain gorillas.

About Satellite Imaging  Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in high and medium resolution satellite imaging products and technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using GIS and CAD applications including, environmental studies, culture extraction, exploration for natural resources, engineering/construction utilizing high and medium resolution mono and stereo satellite image data and specialized Image processing techniques.

Website: www.satimagingcorp.com

Pleiades-1A Satellite Captures First Panchromatic Images

Monday, January 9th, 2012

Pleiades-1 (0.5m) satellite sensor captured the first panchromatic satellite images after its successful launch from Kourou launch site (French Guiana) via a Russian Soyuz ST rocket on December 16, 2011. The launch marked a new step in French-Russian cooperation: it is the second time when the Russian launch vehicle “Soyuz-ST” took off from the French site. The Pléiades system was designed under the French-Italian ORFEO program (Optical & Radar Federated Earth Observation) between 2001 and 2003.

Pleiades-1 will represent the first very high-resolution satellite from SPOT and will be capable of providing orthorectified color data at 0.5-meter resolution (roughly comparable to GeoEye-1) and revisiting any point on Earth as it covers a total of 1 million square kilometers (approximately 386,102 square miles) daily. Perhaps most importantly, Pleiades-1 will be capable of acquiring high-resolution stereo imagery in just one pass, and can accommodate large areas (up to 1,000 km x 1,000 km).

satellite image pleaides 1 Casablanca Mosquee

Pleaides-1 (0.5m) Satellite Image of Casablanca Mosque

To view in high resolution click image.

(Image credit: CNES)

pleiasdes-1 satellite photo SanFrancisco Airport

Pleaides-1 (0.5m) Satellite Image of San Francisco Airport

To view in high resolution click image.

(Image credit: CNES)

To view more Pleiades-1 Satellite Images, visit here.

The Pléiades constellation is composed of two very-high-resolution optical Earth-imaging satellites. Pléiades-1 and Pléiades-2 will provide coverage of Earth’s surface with a repeat cycle of 26 days. Their great agility enables a daily access all over the world, which is a critical need for defense and civil security applications, and a coverage capacity necessary for the cartography kind of applications at scales better than those accessible to SPOT family satellites. Moreover, Pleiades have stereoscopic acquisition capacity to meet the fine cartography needs, notably in urban regions. Pléiades-2 will launch in mid-2012.

Pleiades-1 Satellite SensorPleaides-1 Satellite Sensor

(Image credit: Astrium/CNES)

The satellite will feature four spectral bands (blue, green, red, and IR), as well as image location accuracy of 4.5m (CE90) without ground control points, a wide swath of a scene (20 km, whereas the best US remote sensing satellites have 11-16 km of swath width). Image location accuracy can be improved even further — up to an exceptional 1 meter — by the use of GCPs. Because the satellite has been designed with urgent tasking in mind, images can be requested from Pleiades-1 less then six hours before they are acquired. This functionality will prove invaluable in situations where the expedited collection of new image data is crucial, such as crisis monitoring.

Furthermore, Pleiades constellation offers new services delivering precise geospatial information in record time and capabilities that marks a  shift in the Earth imaging sector. With 450 images acquired every day by each satellite, five acquisition scenarios, and three daily tasking plans, the Pleiades system is tailored to meet the needs of real-time applications.

To view specifications on the Pleiades-1, visit here.

To watch a video of the Pleiades-1 satellite launch, visit here.

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in high and medium resolution satellite imaging products and technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using GIS and CAD applications including, environmental studies, culture extraction, exploration for natural resources, engineering/construction utilizing high and medium resolution mono and stereo satellite image data and specialized Image processing techniques.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas 77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

Satellite Imaging Corporation (SIC) Signs Agreement With RapidEye AG for Distribution of RapidEye Satellite Image Data

Wednesday, June 22nd, 2011

Satellite Imaging Corporation (SIC), a leader in the satellite remote sensing, GIS and mapping industry delivering to commercial customers fully processed and orthorectified high resolution satellite image data and geospatial data products, announced today that SIC is now part of RapidEye AG growing distribution network providing customers with a 5m imaging solution.

Leopold J. Romeijn, President & CEO of Satellite Imaging Corporation commented, “We look forward to partnering with RapidEye to provide our ever growing customer base with a cost effective 5m resolution imaging solution for covering large areas on all continents in support of various mapping applications and International oil & gas exploration activities”.

Click image to view RapidEye 5m ortho satellite image samples of Burghausen, Germany in full resolution.

Sample_RapidEye_MS_5m_NaturalColor_Crop_Website

RapidEye_Sample_Image_Bands_543_PRWeb_20-JUN-2010

Originally planned as an agricultural monitoring system using the RapidEye five spectral bands including a RedEdge (RE) multispectral band the RapidEye satellite sensors have demonstrated to be a cost effective global mapping tool in the 5m resolution range. The RapidEye constellation of Earth observation satellites with the capability to reach any point on Earth every day making the RapidEye satellite sensor suitable collecting areas in tropical regions generally affected by cloud cover. The satellites orbit at an altitude of 630-km. Customers can be provided with data of up to a maximum of 1,500-km in length and 77-km wide.

The RapidEye constellation of five satellites stands apart from other providers of satellite-based geospatial information in their unique ability to acquire high-resolution, large-area image data on a daily basis. The RapidEye system is able to collect an unprecedented 4 million square kilometers of data per day at 6.5 meter nominal ground resolution, and has amassed over 2.0 Billion square kilometers in its archive in just two years of commercial operation. The orthorectified RapidEye Image data is delivered with a ground resolution of 5 meters.

About Satellite Imaging Corporation:

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified Satellite Imaging mosaics DEMs and 3D terrain models for many industries using GIS and CAD applications including, flight simulations, terrain modeling, engineering and construction using high and medium resolution mono and stereo satellite image data.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas 77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada Only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910

Website: http://www.satimagingcorp.com

Aerial Photography of Damage from Devastating Post EF5 Tornado that Hit Joplin Missouri

Friday, May 27th, 2011

This aerial photograph captured the post damage of an Enhanced Fujita Scale (EF-5) tornado that hit Joplin, Missouri on May 22, 2011, one of many tornadoes and storms that wrecked havoc on the Midwest this month. The death toll has risen to 132 and possibly more that have not been accounted for. There have been approximately 1,000 tornadoes in the US so far this year, according to the National Weather Service.

More than 500 people have been killed by twisters in 2011, making it the deadliest tornado year in the United States since 1953, according to the National Weather Service. The Joplin tornado was rated an EF-5, with winds in excess of 200 miles per hour.

aerial photo joplin tornado missouri

Aerial Photograph (30 cm) of EF-5 Tornado Damage Joplin, Missouri

May 22, 2011

© Aerial Imagery Courtesy of MJ Harden, a GeoEye Company

Click image to view in full resolution

aerial photograph joplin missouri tornado

Aerial Photograph (30 cm) of EF5 Tornado Damage – Joplin, Missouri

Joplin High School

© Aerial imagery courtesy of MJ Harden, a GeoEye Company

Click image to view in full resolution

Satellite Imagery and Aerial Photography incorporated with Geographic Information Systems (GIS), can give State and Emergency officials a wealth of information for assessment, analysis and monitoring of natural disasters such as Hurricanes, Tornadoes and Cyclone damage from small to large regions around the globe.

View video of Four Days of Fury Tornadoes that hit the Midwest, visit here.

To view aftermath video, visit here.

More images on Joplin Tornado Damage.

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in high and medium resolution satellite imaging products and technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using GIS and CAD applications including, environmental studies, culture extraction, exploration for natural resources, engineering/construction utilizing high and medium resolution mono and stereo satellite image data and specialized Image processing techniques.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

ALOS Satellite Sensor Power Reduction

Thursday, April 28th, 2011

ALOS the Advanced Land Observing Satellite, renamed “Daichi” operated by JAXA (Japanese Aerospace Exploration Agency) shifted its operation mode to the low load mode due to power generation precipitation on April 22, 2011 around 7:30 am.

The ALOS satellite onboard observation devices were found turned off. The satellite seems to have exceeded its life after five years. The power generation has been rapidly deteriorating, and cannot currently confirm power generation.

The ALOS was launched on January 24, 2006 from the Tanegashima Space Center. The satellite has three remote-sensing instruments: the Panchromatic Remote-sensing Instrument for Stereo Mapping (PRISM) for digital elevation mapping (DEM’s), the Advanced Visible and Near Infrared Radiometer type 2 (AVNIR-2) for precise land coverage observation, and the Phased Array type L-band Synthetic Aperture Radar (PALSAR) for day-and-night and all-weather land observation and enables precise land coverage observation and can collect enough data by itself for mapping on a scale of 25,000:1 without relying on points of reference on the ground.

alos-satellite-sensor daichi

Image Credit: JAXA

ALOS is one of the world’s largest earth observation satellites whose function was to collect global and high resolution land observation data and was developed to contribute to the fields of cartography, disaster monitoring, natural resource surveys and technology development.

Satellite image data was made available at conditions similar to those of ERS and Envisat missions, namely for scientific ‘Category-1′ use as well as commercial applications.

To view high resolution satellite images from the ALOS Satellite visit here.

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications including, flight simulations, terrain modeling, engineering and construction using high and medium resolution mono and stereo satellite image data.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

Satellite Images of Japan Earthquake and Tsunami Damage Before and After

Wednesday, March 16th, 2011

Satellite images captured the catastrophic earthquake and tsunami damages in result of a 8.9-magnitude earthquake that hit northern Japan early Friday March 11, 2011. The earthquake triggered a massive tsunami that caused widespread devastation and damaging a nuclear power plant. Thousands are unaccounted for while search and rescue efforts continue fearing the death toll will rise in the thousands. Japan’s Prime Minister says this is the worst crisis that hit Japan since WWII.

Earthquake and Tsunami damage-Fukushima Dai Ichi Power Plant, Ja

WorldView-2 Satellite Image of Fukushima Daiichi

Nuclear Power Plant – March 14, 2011

(Image Credit:  DigitalGlobe. All Rights reserved.)

Japan’s troubled Fukushima I Nuclear Power Plant, otherwise known as Fukushima Daiichi, appears in this WorldView-2 satellite image (above) that was captured following an explosion at Unit 3 on March 14, 2011. Click on images to view in high resolution.

Fukushima Daiichi Nuclear Power Plant, Japan

satellite image Fukushima_Daiichi_

IKONOS Satellite Image of Post Tsunami Acquired on March 12, 2011

(Image Credit:  GeoEye. All Rights Reserved.)

satellite photo Fukushima_Daiichi_nuclear plant

GeoEye-1 Satellite Image of Pre Tsunami Acquired on November 15, 2009

(Image Credit:  GeoEye. All Rights Reserved.)

Friday’s tsunami disasters damaged a series of nuclear reactors (satellite images above), first reactor No. 1, then No. 3, No. 2  and today No. 4 was reported on fire. Japan suspended operations to prevent a stricken nuclear plant from melting down Wednesday after a surge in radiation made it too dangerous for workers to remain at the facility.

Sendai, Japan

satellite image Sendai_japan post tsunami

IKONOS Satellite Image of Post Tsunami Acquired on March 12, 2011

(Image Credit:  GeoEye. All Rights Reserved.)

This one-meter resolution satellite image of Sendai, Japan (above), was taken one day after an 8.9-magnitude earthquake struck the Oshika Peninsula on March 11, 2011. According to news reports, this is the largest earthquake to hit Japan in recorded history. Analysts believe the powerful earthquake moved Japan’s main island eight feet (2.4 meters), shifted the Earth on its axis four inches (10 centimeters), and unleashed a devastating tsunami. The imagery shows extensive destruction to buildings, vehicles and infrastructure. Entire regions have been flooded, swept away or reduced to ruin. The image was taken by GeoEye’s IKONOS satellite at 10:36 a.m. (local time) on March 12, 2011 from 423 miles in space as it moved from north to south over Japan at a speed of four miles per second.

satellite photo Sendai_japan pre and post tsunami

GeoEye-1 Satellite Image of Pre Tsunami Acquired on November 15, 2009

(Image Credit: GeoEye. All Rights Reserved.)

To View More Before and After  Satellite Photos of Japan Tsunami Damage:

Natori - Before and After

Shinchi – After

Minamisanrikucho – After

The above satellite images were captured from high resolution satellite sensors and shows damages to communities, buildings and roads. Satellite imagery is used to get ground and air assessments of the damage to help rescue and relief workers to focus on their efforts to respond to emergencies and natural disasters.

Damage and Recovery Assessments

Satellite images and aerial photography greatly aids rescue efforts  for emergency personnel to access damage from tsunamis and earthquakes and allows government agencies the ability to view the damage from multiple vantage points. The spatial resolution of an image determines the ability to view individual features such as buildings and bridges. It also affects the ability to monitor and assess damage conditions.

More Videos and Photos:

Tsunami roars ashore

Chilling Video of Japan Tsunami

Before and After Tsunami

Photos and Images of Post Tsunami

TIME Magazine Photos

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications including, flight simulations, terrain modeling, engineering and construction using high and medium resolution mono and stereo satellite image data.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

H.A.W.X. 2 – Satellite Images Create 3D Simulation Worlds in Tom Clancy’s Video Games

Wednesday, November 24th, 2010

Satellite Images have gained popularity in the video game industry and continue to grow. With the availability of high resolution Stereo Satellite Imagery such as GeoEye-1 (0.5m) and IKONOS (0.8m) gamers can experience video games in a realistic 3D simulated world such as Ubisoft’s Tom Clancy’s H.A.W.X. and H.A.W.X. 2.

satellite images 3D virtual reality tom clancy's h.a.w.x 2

GeoEye-1 Satellite Images Ubisoft’s Tom Clancy’s H.A.W.X. 2
(Satellite Image Copyright © 2010 GeoEye)

Jet fighters battle it out above dramatic mountainous terrain in Tom Clancy’s H.A.W.X. 2 with realistic Earth imagery by GeoEye.

(Image from Xbox 360 version)

GeoEye-1 Satellite Imagery has been used to map the ground of Ubisoft’s air-combat title Tom Clancy’s H.A.W.X. 2 for the Xbox 360 video game and entertainment system from Microsoft, the PlayStation 3 computer entertainment system, Windows PC and the Wii system from Nintendo.

The high resolution satellite imagery is taken from the GeoEye-1 satellite sensor from 423 miles from Earth with diverse vistas, including mountains, deserts, mountainous coastal regions and some well known cities, like Cape Town, South Africa allows piloting the planes with very realistic experience.

To view more high resolution satellite images of H.A.W.X. 2 in XBOX 360 version visit here.

Video – Making of H.A.W.X. 2 using GeoEye satellite imagery.

Watch Tom Clancy’s H.A.W.X. 2 Trailer Clip.

Watch interview with GeoEye Tom Clancy’s H.A.W.X.

3D Simulation Modeling

Stereo Satellite images in support of a detailed terrain surface elevation model can assist video game developers to create a simulation model and visualize the urban and landscape space in three dimensions. 3D terrain models have a variety of applications and provide accurate cartographic feature extraction, map updating, digital city modeling and 3D city models in urban areas which are essential to virtual reality environments. While they are generally used to simply visualize the built environment, they are now being used as 3D interfaces for more sophisticated simulation modeling.

To view a 3D Terrain Model example, click here.

In most of these cases the models of buildings, urban features, terrain surface, and vegetation are the primary features of interest. LiDAR data (Light Detection And Ranging) is a mature technology for obtaining the Digital Surface Models (DSM’s) of the earth’s surface. It is a fast method for sampling the earth’s surface with a high density and high positional accuracy. This data when combined with satellite imagery can be used to create highly detailed Digital Surface Models (DSM’s) and eventually Digital Elevation Models (DEMs) to create a 3D virtual world.

LiDAR can generate a three-dimensional dense, geo-referenced points cloud for the reflective terrain surface. The original LiDAR data consists of tremendous points returned from all possible reflective terrain objects, including bare-earth, buildings, bridges, vehicles, trees, and other non-ground features. For many topographic, hydrographic, agricultural, and construction applications, the non-ground (bare-earth) returns must be detected, separated and removed in order to generate the digital terrain model.

A general classification of 3D city models, based on their operational purposes, might be organized around four main types:

* 3D CAD (computer aided design) models of cities
* Static 3D GIS (geographic information systems) models of cities
* Navigable 3D GIS models of cities
* 3D urban simulation model

If a 3D simulation modeling and visualization application requires good detail pertaining to the terrain features and terrain slopes for critical project decisions, an accurate digital terrain model (DTM) and a digital surface model (DSM) must be available.

For more information on our products and services, please contact us.

About Satellite Imaging Corporation:

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery from satellite sensors such as GeoEye-1, IKONOS, WorldView-2 WorldView-1, QuickBird and other high resolution remote sensing products for analysis and mapping applications such as GIS.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified satellite imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications using high and medium resolution mono and stereo satellite image data.

For more information please contact:

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283.2952 (US and Canada only)
Tel: (1) 832.237.2900

Fax: (1) 832.237.2910
E-mail: info@satimagingcorp.com

Website: www.satimagingcorp.com

Satellite Images Capture Toxic Red Sludge in Hungary an Environmental Disaster

Thursday, October 21st, 2010

Satellite Images captured the environmental disaster of a contaminated waste reservoir that gave way to 24.7 million cubic feet of toxic red sludge on October 4th, 2010,  killing nine people, injuring 150, forcing home evacuations and ruined property over 15 square miles.

The red sludge devastated creeks and rivers near the spill site and entered the Danube on Thursday October 7th 2010, moving downstream toward Croatia, Serbia and Romania.

ikonos satellite image toxic red sludge hungary

IKONOS (0.8m) Satellite Image of Toxic Red Sludge – Ajka, Hungary, Kolontar Village

(Image copyright © GeoEye 2010. All Rights Reserved.)

The IKONOS one-meter resolution satellite image features a portion of Hungary’s toxic sludge spill east of Ajka, Hungary in the village of Kolontar. The image was taken on October 7th, 2010 and shows a close-up of the holding pond where the red mud pollution broke through the retainer wall. On the same day the image was captured authorities reported the spill had reached the Danube River, threatening to contaminate the waterway’s ecosystem. The image was collected by the IKONOS Satellite from 423 miles in space as it moved from north to south over Hungary at a speed of 4.2 miles per second.

quickbird satellite image Toxic Spill, Ajka, Hungary

QuickBird (0.6m) Satellite Image of Toxic Red Sludge – Ajka, Hungary, Kolontar Village

(Image copyright © DigitalGlobe 2010. All Rights Reserved.)

Watch a BBC video on the Industrial disaster here.

View a slideshow of the toxic sludge that hit Kolontar village in Hungary here.

Environmental Disaster Analysis and Monitoring Using Satellite Imagery

Satellite Imagery incorporated with Geographic Information Systems (GIS), can give emergency officials a wealth of information for prevention, analysis, assessment and monitoring of environmental disasters and damage from small to large regions around the globe.

Satellite Images gives state and government agencies the ability to view the damage from multiple vantage points. The spatial resolution of an image determines the ability to view individual features such as buildings and bridges. It also affects the ability to monitor and assess damage conditions, and depends on the nature of the hazard itself.

The following Images are an example of analysis;

spot satellite image toxic red sludge hungary kolontar

SPOT (2.5m) Satellite Image of Reservoir in Ajka, Hungary – Before

formosat 2 satellite image hungary toxic spill

FORMOSAT-2 (2.0) Satellite Image of Reservoir in Ajka, Hungary – After

(Satellite Images Copyright © SPOT 2010. All Rights Reserved.)

About Satellite Imaging Corporation:

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery from satellite sensors such as GeoEye-1, WorldView-2 Worldview-1, QuickBird, IKONOS, SPOT-5 and other remote sensing products for analysis and mapping applications such as GIS.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified satellite imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications using high and medium resolution mono and stereo satellite image data.

For more information please contact:

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900
Fax: (1) 832-237-2910
E-mail: info@satimagingcorp.com

Website: www.satimagingcorp.com