Satellite Imaging Corp.

Archive for the ‘Satellite Image Data’ Category

DigitalGlobe Request US government to Lift Restrictions on Commercial Satellite Imagery

Sunday, October 27th, 2013

Satellite imagery provider DigitalGlobe has made a request for the US government to lift restrictions on the pixel resolution of available commercial satellite imagery to better compete against non-US-based companies.

DigitalGlobe argues that the quality of commercial aerial photography — like images available on Google and Bing map websites — is in more than 90 countries at 5-centimeters resolution. These images are taken from an aircraft, not a satellite.

The petition was made to the Commerce Department and National Oceanic and Atmospheric Administration (NOAA) to lift restrictions that limit the quality of commercially available satellite images to 0.5 meter resolution.

Without the waiver, US government agencies and strategic partners will be the only customers allowed access to the highest resolution images.

The request was made on May 14, 2013 but has yet to receive a ruling. Astrium has also requested a lift to the French government. Astrium’s Pleiades 1A/1B satellite, offers satellite imagery at 0.5 meter resolution.

Other satellite sensors at 0.5m resolution includes DigitalGlobe’s WorldView-2, WorldView-1, GeoEye-1 and the new and upcoming launch during 2014 of WorldView-3 will provide a resolution of 0.31 meters.

By allowing higher resolution satellite imagery to commercial customers will help the US maintain a technological edge over foreign companies.

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery and image processing services for analysis and to support Geographic Information System (GIS) and other mapping and research applications.

The company specializes in satellite imaging collections, producing seamless orthorectified imaging mosaics, DEM’s and 3D terrain models for many industries using CAD and GIS applications utilizing high, medium resolution mono and stereo satellite image data.

For more information, please contact us.

Website: www.satimagingcorp.com

Satellite Image of Nikumaroro Island – Amelia Earhart’s Final Destination?

Wednesday, June 6th, 2012

IKONOS (1m) Satellite Image of Nikumaroro Island (Gardner Island) in the Republic of Kiribati

(Copyright © GeoEye and Courtesy of Satellite Imaging Corporation. All Rights Reserved.)

New evidence reported by The International Group for Historic Aircraft Recovery (TIGHAR), a non-profit foundation promoting aviation archaeology and historic aircraft preservation shows that Amelia Earhart and her navigator Fred Noonan possibly landed and eventually died on Gardner Island, now Nikumaroro in the Republic of Kiribati.

TIGHAR concluded that 57 of the 120 signals reported at the time are credible, triangulating Earhart’s position to have been Nikumaroro Island. Reports show that Amelia Earhart radioed their position, then landed on a reef at uninhabited Gardner Island, a small coral atoll now known as Nikumaroro Island that might have caused caused the “Electra” airliner to be swept away and that they lived for a time as castaways only to eventually perish on the uninhabited island.

Other evidence and artifacts found years ago on the island include broken glass, large numbers of fish, bird and turtle bones, several hundred mollusk shells, bone fragments, cosmetic jar, dried fecal matter that might be of human origin and a possible landing gear.

The Disappearance

Amelia Earhart the first woman and the second person to solo the Atlantic was last heard from on July 2, 1937. Earhart and Noonan, low on fuel and unable to find their next scheduled stopping point Howland Island, flew into overcast skies and intermittent rain showers. This made Noonan’s premier method of tracking and celestial navigation difficult. Earhart radioed the USCGC Itasca and was sent a stream of transmissions but she could not hear them. Her radio transmissions, irregular through most of the flight, were faint or interrupted with static. The ship tried to reply, but the plane seemed not to hear. At 8:45 Earhart reported, “We are on the line 157 337 …. We are running on line north and south.” Nothing further was heard from Earhart.

A rescue attempt commenced immediately and became the most extensive air and sea search in naval history. On July 19, after spending $4 million and scouring 250,000 square miles of ocean, the United States government reluctantly called off the operation. In 1938, a lighthouse was constructed on Howland Island in her memory.

The expedition is on-going and TIGHAR researchers will return to the area to search for the famous aircraft “Electra” that was believed to have been swept off a Pacific reef in 1937.

More about Amelia Earhart, visit here.

To read more on Amelia Earhart Project, visit here.

Watch an ABC News video here.

About Satellite Imaging  Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including archaeology, oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in high and medium resolution satellite imaging products and technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using GIS and CAD applications including, environmental studies, culture extraction, exploration for natural resources, engineering/construction utilizing high and medium resolution mono and stereo satellite image data and specialized Image processing techniques.

Website: www.satimagingcorp.com

Pleiades-1A Satellite Captures First Panchromatic Images

Monday, January 9th, 2012

Pleiades-1 (0.5m) satellite sensor captured the first panchromatic satellite images after its successful launch from Kourou launch site (French Guiana) via a Russian Soyuz ST rocket on December 16, 2011. The launch marked a new step in French-Russian cooperation: it is the second time when the Russian launch vehicle “Soyuz-ST” took off from the French site. The Pléiades system was designed under the French-Italian ORFEO program (Optical & Radar Federated Earth Observation) between 2001 and 2003.

Pleiades-1 will represent the first very high-resolution satellite from SPOT and will be capable of providing orthorectified color data at 0.5-meter resolution (roughly comparable to GeoEye-1) and revisiting any point on Earth as it covers a total of 1 million square kilometers (approximately 386,102 square miles) daily. Perhaps most importantly, Pleiades-1 will be capable of acquiring high-resolution stereo imagery in just one pass, and can accommodate large areas (up to 1,000 km x 1,000 km).

satellite image pleaides 1 Casablanca Mosquee

Pleaides-1 (0.5m) Satellite Image of Casablanca Mosque

To view in high resolution click image.

(Image credit: CNES)

pleiasdes-1 satellite photo SanFrancisco Airport

Pleaides-1 (0.5m) Satellite Image of San Francisco Airport

To view in high resolution click image.

(Image credit: CNES)

To view more Pleiades-1 Satellite Images, visit here.

The Pléiades constellation is composed of two very-high-resolution optical Earth-imaging satellites. Pléiades-1 and Pléiades-2 will provide coverage of Earth’s surface with a repeat cycle of 26 days. Their great agility enables a daily access all over the world, which is a critical need for defense and civil security applications, and a coverage capacity necessary for the cartography kind of applications at scales better than those accessible to SPOT family satellites. Moreover, Pleiades have stereoscopic acquisition capacity to meet the fine cartography needs, notably in urban regions. Pléiades-2 will launch in mid-2012.

Pleiades-1 Satellite SensorPleaides-1 Satellite Sensor

(Image credit: Astrium/CNES)

The satellite will feature four spectral bands (blue, green, red, and IR), as well as image location accuracy of 4.5m (CE90) without ground control points, a wide swath of a scene (20 km, whereas the best US remote sensing satellites have 11-16 km of swath width). Image location accuracy can be improved even further — up to an exceptional 1 meter — by the use of GCPs. Because the satellite has been designed with urgent tasking in mind, images can be requested from Pleiades-1 less then six hours before they are acquired. This functionality will prove invaluable in situations where the expedited collection of new image data is crucial, such as crisis monitoring.

Furthermore, Pleiades constellation offers new services delivering precise geospatial information in record time and capabilities that marks a  shift in the Earth imaging sector. With 450 images acquired every day by each satellite, five acquisition scenarios, and three daily tasking plans, the Pleiades system is tailored to meet the needs of real-time applications.

To view specifications on the Pleiades-1, visit here.

To watch a video of the Pleiades-1 satellite launch, visit here.

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in high and medium resolution satellite imaging products and technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using GIS and CAD applications including, environmental studies, culture extraction, exploration for natural resources, engineering/construction utilizing high and medium resolution mono and stereo satellite image data and specialized Image processing techniques.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas 77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

Satellite Imaging Corporation (SIC) Signs Agreement With RapidEye AG for Distribution of RapidEye Satellite Image Data

Wednesday, June 22nd, 2011

Satellite Imaging Corporation (SIC), a leader in the satellite remote sensing, GIS and mapping industry delivering to commercial customers fully processed and orthorectified high resolution satellite image data and geospatial data products, announced today that SIC is now part of RapidEye AG growing distribution network providing customers with a 5m imaging solution.

Leopold J. Romeijn, President & CEO of Satellite Imaging Corporation commented, “We look forward to partnering with RapidEye to provide our ever growing customer base with a cost effective 5m resolution imaging solution for covering large areas on all continents in support of various mapping applications and International oil & gas exploration activities”.

Click image to view RapidEye 5m ortho satellite image samples of Burghausen, Germany in full resolution.

Sample_RapidEye_MS_5m_NaturalColor_Crop_Website

RapidEye_Sample_Image_Bands_543_PRWeb_20-JUN-2010

Originally planned as an agricultural monitoring system using the RapidEye five spectral bands including a RedEdge (RE) multispectral band the RapidEye satellite sensors have demonstrated to be a cost effective global mapping tool in the 5m resolution range. The RapidEye constellation of Earth observation satellites with the capability to reach any point on Earth every day making the RapidEye satellite sensor suitable collecting areas in tropical regions generally affected by cloud cover. The satellites orbit at an altitude of 630-km. Customers can be provided with data of up to a maximum of 1,500-km in length and 77-km wide.

The RapidEye constellation of five satellites stands apart from other providers of satellite-based geospatial information in their unique ability to acquire high-resolution, large-area image data on a daily basis. The RapidEye system is able to collect an unprecedented 4 million square kilometers of data per day at 6.5 meter nominal ground resolution, and has amassed over 2.0 Billion square kilometers in its archive in just two years of commercial operation. The orthorectified RapidEye Image data is delivered with a ground resolution of 5 meters.

About Satellite Imaging Corporation:

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified Satellite Imaging mosaics DEMs and 3D terrain models for many industries using GIS and CAD applications including, flight simulations, terrain modeling, engineering and construction using high and medium resolution mono and stereo satellite image data.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas 77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada Only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910

Website: http://www.satimagingcorp.com

Satellite Image of Devastating EF 4 Tornado Damage in Alabama

Friday, April 29th, 2011

Satellite image captured the destruction of a EF4 tornado that hit Tuscaloosa, Alabama and other areas of the South on Wednesday April 27th. The tornado had a maximum width of half a mile and a path length of 2.82 miles.The death toll keeps rising with over 340 claimed dead. The twister alone may register as the most powerful long-track tornado in US history.

satellite image tuscaloosa_alabama tornado damage

IKONOS Satellite Image of Tuscaloosa, Alabama Tornado Damage

(Image copyright © GeoEye 2011. All Rights Reserved.)

A series of tornadoes hit the South this week traveling in excess of 220 miles across Alabama, Georgia, and Tennessee. Approximately 211 tornadoes were reported within a few hours’ span on Wednesday, including a series of so-called long-track twisters that raked across six states.

National Weather Service confirmed that an EF-5 tornado with winds up to 205 mph struck the city of Smithville Wednesday afternoon. The first EF-5 tornado to hit Mississippi since March 1966. EF-5 tornadoes being the most deadliest.

To view more satellite images of tornado damage, visit here.

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications including, flight simulations, terrain modeling, engineering and construction using high and medium resolution mono and stereo satellite image data.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

Satellite Images of Japan Earthquake and Tsunami Damage Before and After

Wednesday, March 16th, 2011

Satellite images captured the catastrophic earthquake and tsunami damages in result of a 8.9-magnitude earthquake that hit northern Japan early Friday March 11, 2011. The earthquake triggered a massive tsunami that caused widespread devastation and damaging a nuclear power plant. Thousands are unaccounted for while search and rescue efforts continue fearing the death toll will rise in the thousands. Japan’s Prime Minister says this is the worst crisis that hit Japan since WWII.

Earthquake and Tsunami damage-Fukushima Dai Ichi Power Plant, Ja

WorldView-2 Satellite Image of Fukushima Daiichi

Nuclear Power Plant – March 14, 2011

(Image Credit:  DigitalGlobe. All Rights reserved.)

Japan’s troubled Fukushima I Nuclear Power Plant, otherwise known as Fukushima Daiichi, appears in this WorldView-2 satellite image (above) that was captured following an explosion at Unit 3 on March 14, 2011. Click on images to view in high resolution.

Fukushima Daiichi Nuclear Power Plant, Japan

satellite image Fukushima_Daiichi_

IKONOS Satellite Image of Post Tsunami Acquired on March 12, 2011

(Image Credit:  GeoEye. All Rights Reserved.)

satellite photo Fukushima_Daiichi_nuclear plant

GeoEye-1 Satellite Image of Pre Tsunami Acquired on November 15, 2009

(Image Credit:  GeoEye. All Rights Reserved.)

Friday’s tsunami disasters damaged a series of nuclear reactors (satellite images above), first reactor No. 1, then No. 3, No. 2  and today No. 4 was reported on fire. Japan suspended operations to prevent a stricken nuclear plant from melting down Wednesday after a surge in radiation made it too dangerous for workers to remain at the facility.

Sendai, Japan

satellite image Sendai_japan post tsunami

IKONOS Satellite Image of Post Tsunami Acquired on March 12, 2011

(Image Credit:  GeoEye. All Rights Reserved.)

This one-meter resolution satellite image of Sendai, Japan (above), was taken one day after an 8.9-magnitude earthquake struck the Oshika Peninsula on March 11, 2011. According to news reports, this is the largest earthquake to hit Japan in recorded history. Analysts believe the powerful earthquake moved Japan’s main island eight feet (2.4 meters), shifted the Earth on its axis four inches (10 centimeters), and unleashed a devastating tsunami. The imagery shows extensive destruction to buildings, vehicles and infrastructure. Entire regions have been flooded, swept away or reduced to ruin. The image was taken by GeoEye’s IKONOS satellite at 10:36 a.m. (local time) on March 12, 2011 from 423 miles in space as it moved from north to south over Japan at a speed of four miles per second.

satellite photo Sendai_japan pre and post tsunami

GeoEye-1 Satellite Image of Pre Tsunami Acquired on November 15, 2009

(Image Credit: GeoEye. All Rights Reserved.)

To View More Before and After  Satellite Photos of Japan Tsunami Damage:

Natori - Before and After

Shinchi – After

Minamisanrikucho – After

The above satellite images were captured from high resolution satellite sensors and shows damages to communities, buildings and roads. Satellite imagery is used to get ground and air assessments of the damage to help rescue and relief workers to focus on their efforts to respond to emergencies and natural disasters.

Damage and Recovery Assessments

Satellite images and aerial photography greatly aids rescue efforts  for emergency personnel to access damage from tsunamis and earthquakes and allows government agencies the ability to view the damage from multiple vantage points. The spatial resolution of an image determines the ability to view individual features such as buildings and bridges. It also affects the ability to monitor and assess damage conditions.

More Videos and Photos:

Tsunami roars ashore

Chilling Video of Japan Tsunami

Before and After Tsunami

Photos and Images of Post Tsunami

TIME Magazine Photos

About Satellite Imaging Corporation

Satellite Imaging Corporation (SIC), a privately held technology company, provides global satellite imaging and processing services for a number of industries, including oil and gas, mining, cadastre, tax mapping, construction, environmental, forestry and agriculture.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified Satellite Imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications including, flight simulations, terrain modeling, engineering and construction using high and medium resolution mono and stereo satellite image data.

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900 Ext.: 202
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

H.A.W.X. 2 – Satellite Images Create 3D Simulation Worlds in Tom Clancy’s Video Games

Wednesday, November 24th, 2010

Satellite Images have gained popularity in the video game industry and continue to grow. With the availability of high resolution Stereo Satellite Imagery such as GeoEye-1 (0.5m) and IKONOS (0.8m) gamers can experience video games in a realistic 3D simulated world such as Ubisoft’s Tom Clancy’s H.A.W.X. and H.A.W.X. 2.

satellite images 3D virtual reality tom clancy's h.a.w.x 2

GeoEye-1 Satellite Images Ubisoft’s Tom Clancy’s H.A.W.X. 2
(Satellite Image Copyright © 2010 GeoEye)

Jet fighters battle it out above dramatic mountainous terrain in Tom Clancy’s H.A.W.X. 2 with realistic Earth imagery by GeoEye.

(Image from Xbox 360 version)

GeoEye-1 Satellite Imagery has been used to map the ground of Ubisoft’s air-combat title Tom Clancy’s H.A.W.X. 2 for the Xbox 360 video game and entertainment system from Microsoft, the PlayStation 3 computer entertainment system, Windows PC and the Wii system from Nintendo.

The high resolution satellite imagery is taken from the GeoEye-1 satellite sensor from 423 miles from Earth with diverse vistas, including mountains, deserts, mountainous coastal regions and some well known cities, like Cape Town, South Africa allows piloting the planes with very realistic experience.

To view more high resolution satellite images of H.A.W.X. 2 in XBOX 360 version visit here.

Video – Making of H.A.W.X. 2 using GeoEye satellite imagery.

Watch Tom Clancy’s H.A.W.X. 2 Trailer Clip.

Watch interview with GeoEye Tom Clancy’s H.A.W.X.

3D Simulation Modeling

Stereo Satellite images in support of a detailed terrain surface elevation model can assist video game developers to create a simulation model and visualize the urban and landscape space in three dimensions. 3D terrain models have a variety of applications and provide accurate cartographic feature extraction, map updating, digital city modeling and 3D city models in urban areas which are essential to virtual reality environments. While they are generally used to simply visualize the built environment, they are now being used as 3D interfaces for more sophisticated simulation modeling.

To view a 3D Terrain Model example, click here.

In most of these cases the models of buildings, urban features, terrain surface, and vegetation are the primary features of interest. LiDAR data (Light Detection And Ranging) is a mature technology for obtaining the Digital Surface Models (DSM’s) of the earth’s surface. It is a fast method for sampling the earth’s surface with a high density and high positional accuracy. This data when combined with satellite imagery can be used to create highly detailed Digital Surface Models (DSM’s) and eventually Digital Elevation Models (DEMs) to create a 3D virtual world.

LiDAR can generate a three-dimensional dense, geo-referenced points cloud for the reflective terrain surface. The original LiDAR data consists of tremendous points returned from all possible reflective terrain objects, including bare-earth, buildings, bridges, vehicles, trees, and other non-ground features. For many topographic, hydrographic, agricultural, and construction applications, the non-ground (bare-earth) returns must be detected, separated and removed in order to generate the digital terrain model.

A general classification of 3D city models, based on their operational purposes, might be organized around four main types:

* 3D CAD (computer aided design) models of cities
* Static 3D GIS (geographic information systems) models of cities
* Navigable 3D GIS models of cities
* 3D urban simulation model

If a 3D simulation modeling and visualization application requires good detail pertaining to the terrain features and terrain slopes for critical project decisions, an accurate digital terrain model (DTM) and a digital surface model (DSM) must be available.

For more information on our products and services, please contact us.

About Satellite Imaging Corporation:

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery from satellite sensors such as GeoEye-1, IKONOS, WorldView-2 WorldView-1, QuickBird and other high resolution remote sensing products for analysis and mapping applications such as GIS.

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified satellite imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications using high and medium resolution mono and stereo satellite image data.

For more information please contact:

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283.2952 (US and Canada only)
Tel: (1) 832.237.2900

Fax: (1) 832.237.2910
E-mail: info@satimagingcorp.com

Website: www.satimagingcorp.com

Satellite Images Captured the Catastrophic Flooding in Pakistan

Sunday, August 8th, 2010

Satellite images captured the catastrophic floods that hit Pakistan on August 1, 2010 the worst since 80 years which have affected 14 million people. As many as 12 million people have been affected by the torrential rains and floods and about 1,300 people have died.

A total of 650,000 houses have been damaged or destroyed and up to 500,000 people are homeless in Punjab province. At least 1.4 million acres of farmland were destroyed in the province, where people rely heavily on agriculture for food.

satellite image Flooding-Nowshera, Pakistan

Pre-Flooding – Nowshera, Pakistan-October 7, 2007

QuickBird satellite image of Nowshera and the surrounding area.  (credit:DigitalGlobe)

satellite image Flooding-Nowshera, Pakistan

Post-Flooding – Nowshera, Pakistan-August 5, 2010

Worldview-2 satellite image of Nowshera and the surrounding area.  (credit:DigitalGlobe)

The satellite images above were taken from the Worldview-2 and QuickBird satellite sensor and shows the pre and post flooding in northern Pakistan standing water burying farmlands and settlements.

Flooding of the Kabul River meanders over flat ground near the area, and standing water outside of the river’s banks formed large loops of water similar in shape to the river’s path. Flooding is especially severe in the northwest, although this may result partly from the absence of many high-profile features in that area.

Satellite Imagery and Mapping of Natural Disasters

Emergency managers use remote sensing and mapping tools such as satellite imagery and GIS can facilitate critical decision-making before and after a disaster impacts an area.  In the early, crucial stages of a disaster or emergency and throughout the disaster process, managers use satellite imagery and GIS products because they provide important information, in quick and easy-to-understand formats.

Remote Sensing gives state and government agencies the ability to view the damage from multiple vantage points. The spatial resolution of an image determines the ability to view individual features such as buildings and bridges. It also affects the ability to monitor and assess damage conditions, and depends on the nature of the hazard itself.

To view photos of the flooding in Pakistan visit here.

To view our YouTube channel and watch a video on “Satellite Image Gallery of Natural Disasters – Floods, Hurricanes, Tornadoes, Tsunamis” and more.

About Satellite Imaging Corporation:

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery from satellite sensors such as GeoEye-1, WorldView-2 Worldview-1, QuickBird, IKONOS, SPOT-5 and other remote sensing products for analysis and mapping applications such as Geographic Information System (GIS).

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified satellite imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications including engineering and construction, homeland security, defense, intelligence and disaster response using high and medium resolution mono and stereo satellite image data.

For more information contact:

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

Satellite Images Supports Gulf Oil Spill Response and Cleanup

Friday, June 25th, 2010

Satellite images support the Gulf of Mexico oil spill response and cleanup with spill mapping including documenting the condition of coastal wetlands before oil landfall. Satellite imagery will assist  response teams in forecasting the trajectory of the oil and in documenting changes in the ecosystem.

Satellites can document the overall extent of the oil but cannot distinguish between the sheen and thick patches. While the sheen represents most of the area of the slick, the majority of the oil is concentrated in the thicker part. Satellite images should be able to identify the thicker parts, helping oil spill responders know where to deploy oil-skimming boats and absorbent booms.

satellite image gulf_mexico_oil_slick geoeye-1

GeoEye-1 Satellite Image of Gulf Oil Spill

(Image Credit: GeoEye)

This half-meter resolution satellite image (above) features a portion of the oil slick in the Gulf of Mexico. Streaks of oil blown by wind and currents can easily be seen against the darker colored water. The image was taken by the GeoEye-1 satellite from 423 miles in space on April 29, 2010 as it moved from north to south over the United States at a speed of four miles per second.

Transocean Deepwater Horizon Drilling rig oil slick, Gulf of Mex

QuickBird Satellite Image of Gulf Oil Spill

(Image Credit: DigitalGlobe)

wv-2 satellite image gulf oil spill clean up

WorldView-2 Satellite Image of Gulf Oil Spill

(Image Credit: DigitalGlobe)

Researchers also plan to measure changes in vegetation along the coastline and assess where and how oil may be affecting marshes, swamps, bayous, and beaches that are difficult to survey on the ground.

Researchers and scientists will be:

* Collecting satellite imagery to assess the impact on wetlands and coasts
* Developing maps showing NOAA projections of spill trajectory with respect to DOI Lands
* Collecting samples to ascertain source and levels of toxicity to soils and water systems
* Conducting tests to determine cause of mortality of wildlife
* Developing models that depict how local tidal and current conditions will interact with seafloor bathymetry to carry oil over barrier islands
* Providing decision support tools to help DOI land managers mitigate the effects of the oil spill and assist in restoration efforts

worldview-2 Gulf of Mexico Oil Spill satellite photo

WorldView-2 Satellite Image of Gulf Oil Spill

(Image Credit: DigitalGlobe)

This is an enhanced satellite image of the oil spill and clean up effort in the Gulf of Mexico.

This image leverages the different sensor bands of the WorldView-2 satellite to highlight the oil and dispersant.

The oil spill from the Deepwater Horizon oil rig occurred after an explosion on April 20, 2010 and various methods of containing the oil spill have been developed, including controlled burns, domes over the oil spill, and the use of remotely operated vehicles to manipulate equipment on the sea floor.

To watch a time lapse video of satellite images of the Gulf Oil Spill visit here.

About Satellite Imaging Corporation:

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery from satellite sensors such as GeoEye-1, WorldView-2 Worldview-1, QuickBird, IKONOS, SPOT-5 and other remote sensing products for analysis and mapping applications such as Geographic Information System (GIS).

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified satellite imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications including engineering and construction, homeland security, defense, intelligence and disaster response using high and medium resolution mono and stereo satellite image data.

For more information contact:

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com

Satellite Images Capture Green Point Stadium in Cape Town, South Africa – Home to the FIFA World Cup 2010

Sunday, May 16th, 2010

Satellite images of the construction and newly completed Cape Town Stadium (also known as Green Point Stadium) in Cape Town, South Africa a 68,000 seat multi-purpose stadium built for the FIFA World Cup 2010.

satellite image Green Point Stadium, Cape Town, South Africa

QuickBird Satellite Image of Green Point  Stadium Completed Construction

Cape Town, South Africa

(Image Copyright © DigitalGlobe 2010. All Rights Reserved.)

The Green Point Stadium which was demolished in 2007 with a 18,000 seat capacity hosted many football matches including the Santos Football Club and Ajax Cape Town at different points and to various popular music concerts including Michal Jackson.

Construction began in March of 2007 and took  33 months to complete costing approximately US $600 million. The stadium was completed in December of 2009.

satellite photo Green Point Stadium World Cup cape town

GeoEye-1 Satellite Image of Green Point Stadium Construction

Cape Town, South Africa

(Image Copyright © GeoEye 2010. All Rights Reserved.)

The stadium is located in Green Point, between Signal Hill and the Atlantic Ocean, near the Cape Town city center. The stadium will host first round, second round, quarter, and semi-final matches. GeoEye-1 .50-meter resolution collected this image September 11, 2009.

After the 2010 World Cup, the stadium will be reduced to a capacity of 55, 000 and will cater to various sports, including rugby, as well as music concerts and other major events.

Official FIFA World Cup Website

About Satellite Imaging Corporation:

Satellite Imaging Corporation (SIC), a privately held technology company that provides high resolution satellite imagery from satellite sensors such as GeoEye-1, WorldView-2 Worldview-1, QuickBird, IKONOS, SPOT-5 and other remote sensing products for analysis and mapping applications such as Geographic Information System (GIS).

The company specializes in mono and stereo satellite imaging technology producing seamless orthorectified satellite imaging mosaics DEM’s and 3D terrain models for many industries using CAD and GIS applications including engineering and construction, homeland security, defense, intelligence and disaster response using high and medium resolution mono and stereo satellite image data.

For more information contact:

Satellite Imaging Corporation
36842 Meadow Creek Court
Magnolia, Texas  77355-8603
U.S.A.

Toll Free (866) 283-2952 (US and Canada only)
Tel: (1) 832-237-2900
Fax: (1) 832-237-2910
Website: www.satimagingcorp.com